HighByte Blog
Read company updates and our technology viewpoints here.
|
Read company updates and our technology viewpoints here.
|
Time to read: 7 minutes ![]() Based on my conversations with more than 500 manufacturing companies and integrators over the past five years, I believe the Industrial Internet of Things (IIoT) will continue to be a paramount part of the manufacturing landscape in 2021. The new year will bring a continued increase in digitalization across enterprises. While we have seen an increase in “digital transformation” initiatives among manufacturing companies for several years, the COVID-19 pandemic and the challenges it created for production, safety, remote access, and supply chain have accelerated the urgency to make digitalization a reality. I also believe IIoT projects will continue to scale because of changes we are seeing in people, processes, and technology. Here are five predictions for 2021.
Time to read: 10 minutes
![]()
Most manufacturing companies realize the benefits of leveraging industrial data to improve production and save costs, but they remain challenged as to how to scale-up their pilots and small-scale tests to the plant-wide, multi-plant, or enterprise level. There are many reasons for this including the time and cost of integration projects, the fear of exposing operational systems to cyber-threats, and a lack of skilled human resources.
At the root of all of these problems is the difficulty of integrating data streams across applications in a multi-system and multi-vendor environment, which has required some degree of custom coding and scripting. Standardizing data models, flows, and networks is hard work. Unlike an office environment with its handful of systems and databases, a typical factory can have hundreds of data sources distributed across machine controls, PLCs, sensors, servers, databases, SCADA systems, and historians—just to name a few. Industrial DataOps provides a new approach to data integration and management. It provides a software environment for data documentation, governance, and security from the most granular level of a machine in a factory, up to the line, plant, or enterprise level. Industrial DataOps offers a separate data abstraction layer, or hub, to securely collect data in standard data models for distribution across on-premises and cloud-based applications. These four use cases illustrate how Industrial DataOps can integrate your role-based operational systems with your business IT systems as well as those of outside vendors such as machine builders and service providers.
Time to read: 7 minutes
![]()
An executive for an industrial products company once told me even though his factories are full of similar equipment, he still struggled to access meaningful data from the machines. Each one of the plastic injection molding machines had a different way of presenting the data. That meant the company needed to customize coding for every piece of equipment to obtain meaningful insights.
It’s a common scenario in many industrial environments, where plants may have hundreds of PLCs and machine controllers on disparate machines generating operational data that is unintelligible to the data scientists who must make sense of it. This is where Industrial DataOps comes in. It provides a way to standardize data using common models, or object-oriented approaches, to integrate and manage information coming from multiple sources. Here’s a closer look at the top six signs it’s time to consider an Industrial DataOps architecture for your company.
Time to read: 14 minutes
![]()
If you know me well, then you’ve probably heard me say words matter. A shared vocabulary—and a shared understanding of a word’s meaning—is a simple but powerful tool when two bodies approach a problem from different perspectives.
Two bodies that often approach problems, projects, and process from different perspectives are IT and Operations Technology (OT). While the industrial automation community has been writing and discussing the necessity of IT-OT convergence for nearly a decade, this functional collaboration still remains a stumbling block for many industrial companies on their Industry 4.0 journeys. The good news is that the emerging concept of Industrial DataOps can provide some common ground. DataOps is a new approach to data integration and security that aims to improve data quality and reduce time spent preparing data for use throughout the enterprise. Industrial DataOps provides a toolset—and a mindset—for OT to establish “data contracts” with IT. By using an Industrial DataOps solution, OT is empowered to model, transform, and share plant floor data with IT systems without the integration and security concerns that have long vexed the collaboration. If we see the value in IT-OT collaboration, the first step is getting these functions to speak the same language. This post aims to document key terms surrounding Industrial DataOps and provide IT and OT with a common dictionary. Some of these definitions are more technical in nature and others are more business oriented. Let’s dive in. |
Subscribe
Blog Categories
All
|
Copyright © 2021 HighByte, Inc. All rights reserved. | Privacy Policy | COVID-19 Statement
|
|