BIGDATAWIRE | H,ghByte

AAAAAAAAAAA * Al * ADVANCED ANALYTICS

When MQTT Falls Down: 5
Common Pitfalls in UNS Design

AUTHOR
Aron Semle, HighByte Chief Technology Officer

This article first appeared in its original form on bigdatawire.com in July 2024.


https://www.bigdatawire.com

When MQTT Falls Down: 5 Common Pitfalls in UNS Design

Introduction

The Unified Namespace (UNS) is here to

stay. In concept, it's a single location that
represents the real-time state of your factory,
using open standards. Evangelized by Walker
Reynolds, President of 4.0 Solutions and the
Board Chairman of Intellic Integration, the
UNS is appealing because it strikes at the core
problem we've faced in factories for decades:
Getting access to machine data is hard.

In practice, the UNS is often an MQ Telemetry
Transport (MQTT) broker with an ISA-95

topic hierarchy (Site/Area/Line) and edge
applications to convert industry protocols (e.g.,
OPC UA, Modbus, Ethernet/IP, SIMATIC STEP
7) to contextualized, human readable JSON
payloads or Sparkplug B.

But UNS as a concept is broader than a single
technology. You could build a UNS using OPC
UA, SQL, or many other technology stacks. So
why is MQTT so common?

MQTT is simple. It's report by exception. It

has a flexible topic hierarchy that's easy to
understand, and it puts little to no constraints
on the data, making it very flexible.

These qualities make MQTT an excellent
choice for real-time machine data, but like

all technologies, it has limitations. There are

a handful of UNS design patterns we've seen
that create challenges for MQTT, and other
industrial data patterns that aren’t an ideal fit.
The purpose of this article is to discuss these
in more detail so that you can understand the
pros and cons and make informed decisions
based on your unique environment.

When MQTT Falls Down: 5 Common Pitfalls in UNS Design

01

Using MQTT As a Tunnel

MQTT is designed to be 1:N or N:1, meaning

a single producer of data can have many
subscribers listening, or many producers can

have a single subscriber listening. This design is
great for the UNS, but what if, for example, you're
simply trying to get data between your SCADA
system and Snowflake? This use case is 1:1, a single
producer and a subscriber.

There are some advantages that lead customers
down the path of using MQTT for these use cases.

In the future, you may need other applications
to consume the data. MQTT easily enables this;
MQTT connects outbound from a secure
network to an insecure network (e.g. DMZ) not
requiring any open inbound firewall ports on
the secure network (i.e. you don't need to talk
with IT).

But if you don't have near-term plans to leverage
the data in other applications, is it worth
adopting MQTT? If you're spending a lot of

time customizing the data payload for the end
application, it might be a sign that you're using
MQTT as a tunnel. This is even more apparent if
you've adopted other technologies like Sparkplug
B to enable the tunnel. Sparkplug B is a great
enabling technology between devices and SCADA,
but it creates integration challenges as you move
up the stack.

The hidden cost of the tunnel solution is the
adoption of an MQTT Broker, protocol converters,
and the need to secure and support that stack. In
software development, we call this technical debt.

Maybe this is OK, but when | see this pattern, my
general guidance is to design a solution that can
easily enable MQTT data access if needed, but not
to require the technology until you're leveraging
its benefits.

2 | HighByte


http://www.snowflake.com/

02

Publish, to Subscribe, to Publish (Repeat)

You often see edge data that isn't well formatted
for MQTT. It either exists in a proprietary format,
or maybe it isn't contextualized enough. In these
patterns, an application sends raw data to a topic
(e.g., /mytopic/raw) and then another application
subscribes to the topic, transforms the data, and
publishes on a separate topic (e.g., /mytopic/
cleaned). This pattern might continue, with
subscribing to the cleaned topic and publishing
an aggregate topic, alarm topics, etc. Rinse, wash,
and repeat.

If you've ever been fishing and had your line
tangle, this is how | picture this pattern. The
dependencies between topics become hard to
track as the MQTT topic namespace becomes
cluttered. This makes it hard to identify and debug
failures.

The existence of this pattern isn't inherently bad,
but it may be a sign that you'd benefit from
doing more data preparation at the edge before
publishing to MQTT.

When MQTT Falls Down: 5 Common Pitfalls in UNS Design

03

Transactions Through a UNS

Transactions are a common data pattern in
manufacturing. The most common example of
transactions are writes. For example, you may
want to write set points, clear an alarm, or some
other function.

MQTT was developed in the 90s for the Oil and
Gas industry, classically known as SCADA or
“Supervisory Control and Data Acquisition.” The
key word is Supervisory. MQTT can publish to a
topic as a way to issue a write, but given that it's
a one-to-many protocol, there is no way to easily
get a write response. Sparkplug B does this with
Command (CMD) messages, which are senton a
unique topic, but to know if the write succeeded,
you must monitor the data published by the
device to see if a value changed. This may work
for Supervisory Control, but inside a factory, it's
often important to know immediately if a write
succeeds or fails to take corrective action.

There are some clever patterns to try and simulate
transactions over MQTT. For example, a common
pattern is to issue a write on a topic with a unique
transaction ID (e.g., writes/txid/123). The client then
subscribes to another topic with the same unique
ID to get the response (e.g., writes/response/
txid/123). It's clever, but it's not a true transaction,
it requires both clients to understand the protocol,
and—worse—it quickly pollutes the MQTT topic
namespace by creating new topics for each write.

REST or OPC UA are better suited for request/
response interactions. They can be synchronous,
meaning you immediately know the status of the
write and can act accordingly.

If you're trying to do writes through the MQTT

Broker, it might be a sign that you're misusing the
technology.

3 | HighByte



04

Large Data Sets

Factories have a lot of data. Systems like historians
and SQL databases can easily grow to terabytes

in size. There are many use cases where you may
want to move all or some of this data between
applications.

In cases where an MQTT Broker is already
available in the technology stack for real-time
data, customers may try and use it for historical
workflows. MQTT is limited to 256MB message
size, which, in fairness, is pretty large. But MQTT
is optimized for small to mid-sized messages
delivered very quickly, not for moving large
payloads infrequently.

The result is an inefficient data exchange that
could impact performance of more time sensitive,
real-time data in the broker.

This is made worse if publishers use the MQTT
retained feature. Retained is useful when a new
client wants to know the most recent publish

on a topic, but if this publish is 200MB+ in size,

it's problematic. The broker ends up storing and
replicating the large message either in memory or
on disk.

In most cases, SQL, historian, and large file data
flows are better suited for other technologies
like REST, FTP, etc., and should not be tunneled
through MQTT.

When MQTT Falls Down: 5 Common Pitfalls in UNS Design

05

Infrequently Used Data

Some data in a PLC is needed in near real-time,
updating every second or faster. But there is a

lot of other data that is needed less frequently, if
at all. For example, maybe the PLC has registers
that hold debug information about the last batch
that was processed. This information is helpful in
the case of an error, but in general, it is diagnostic
information that isn't needed in real-time.

If MQTT or Sparkplug B are the only data paths
you have to the PLC, this data must be configured
and published continuously for it to be available
in the event it's needed. If it's not, this will require
someone to reconfigure the data exposed by

the device, which depending on location and
availability, could be challenging.

The root cause of this problem is that MQTT is
report-by-exception and doesn’t have a way to
expose what topics/data are available or control
what data is sent to consumers. Other protocols
like OPC UA solve this by exposing a browse
interface and allowing clients to browse the

data that's available, select what they need, and
determine how often to consume it. This approach
is generally better when data is needed on-
demand,

If you're forced to publish data to MQTT that is
infrequently or never used, it might be a sign that
you need more flexibility than what out-of-the-box
MQTT provides for those use cases.

4 | HighByte



Conclusion

MQTT is a key enabling technology that
has driven UNS adoption. It's a great
solution for real-timme machine data in
the UNS, providing an open and flexible
way to communicate machine state and
subscribe from many applications.

But like all technologies, it has
[imitations. If some of the examples
provided in this article resonate with
your architecture, it doesn’t mean your
architecture is inherently wrong, but you
may want to consider the pros and cons
of the approach.

At HighByte, we're protocol and vendor
agnostic. We believe that although MQTT
is a key enabler for real-time machine
data in the UNS, the UNS is broader than
a single technology and encompasses all
data patterns found in the factory. But
more on that in a future article.

When MQTT Falls Down: 5 Common Pitfalls in UNS Design 5 | ngh'Byte



About the Author

Aron Semle is the Chief Technology Officer of HighByte, focused on
guiding the company’s technology and product strategy through
product development, technical evangelism, and supporting customer
success. His areas of responsibility include research and development
and product development and validation.

Aron has more than 15 years of experience in industrial technology. He
previously worked at Kepware and PTC from 2008 until 2018 in a variety
of roles including software engineer, product manager, R&D lead, and
director of solutions management, helping to shape the company’s
strategy in the manufacturing operations market.

Aron has a bachelor’'s degree in computer engineering from the
University of Maine, Orono.

About HighByte

HighByte is an industrial software company founded in 2018 in Portland, Maine USA. The

company builds solutions that address the data architecture and integration challenges faced by
manufacturers and industrial companies as they digitally transform. HighByte Intelligence Hub,

the company’s proven Industrial DataOps software, provides modeled, ready-to-use data to the
Cloud using a codeless interface to speed integration time and accelerate analytics. The Intelligence
Hub has been deployed in more than a dozen countries by the world's most innovative companies
spanning a wide range of vertical markets, including automotive, energy, food and beverage, life
sciences, and mining and metals. Learn more at highbyte.com.

© 2025 HighByte, Inc. All rights reserved. HighByte is a registered trademark of HighByte, Inc.

When MQTT Falls Down: 5 Common Pitfalls in UNS Design 6 | ngh'Byte


http://highbyte.com

